Please use this identifier to cite or link to this item:
Title: A general reactive transport modeling framework for simulating and interpreting groundwater 14C age and δ13C
Authors: Salmon, SU
Prommer, H
Park, J
Meredith, KT
Turner, JV
McCallum, JL
Keywords: Environmental transport
Ground water
Carbon 14
Tracer techniques
Water quality
Issue Date: 12-Dec-2014
Publisher: John Wiley & Sons, Inc
Citation: Salmon, S. U., Prommer, H., Park, J., Meredith, K. T., Turner, J. V., & McCallum, J. L. (2015). A general reactive transport modeling framework for simulating and interpreting groundwater 14C age and δ13C. Water Resources Research, 51(1), 359-376. doi:10.1002/2014WR015779
Abstract: A reactive transport modeling framework is presented that allows simultaneous assessment of groundwater flow, water quality evolution including δ13C, and 14C activity or “age”. Through application of this framework, simulated 14C activities can be directly compared with measured 14C activities. This bypasses the need for interpretation of a 14C age prior to flow simulation through factoring out processes other than radioactive decay, which typically involves simplifying assumptions regarding spatial and temporal variability in reactions, flow, and mixing. The utility of the approach is demonstrated for an aquifer system with spatially variable carbonate mineral distribution, multiple organic carbon sources, and transient boundary conditions for 14C activity in the recharge water. In this case, the simulated 14C age was shown to be relatively insensitive to isotopic fractionation during DOC oxidation and variations in assumed DOC degradation behavior. We demonstrate that the model allows quantitative testing of hypotheses regarding controls on groundwater age and water quality evolution for all three carbon isotopes. The approach also facilitates incorporation of multiple environmental tracers and combination with parameter optimization techniques. ©2014 American Geophysical Union
ISSN: 1944-7973
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.