Please use this identifier to cite or link to this item:
Title: Measurement of residual stresses in titanium aerospace components formed via additive manufacturing
Authors: Hoye, N
Li, HJ
Cuiuri, D
Paradowska, AM
Keywords: Residual stresses
Neutron diffraction
Aerospace industry
Issue Date: Feb-2014
Publisher: Trans Tech Publications Ltd
Citation: Hoye, N., Li, H. J., Cuiuri, D., & Paradowska, A. M. (2014). Measurement of Residual Stresses in Titanium Aerospace Components Formed via Additive Manufacturing. Materials Science Forum, 777, 124-129. doi:10.4028/
Abstract: In the present study gas tungsten arc welding (GTAW) with automated wire addition was used to additively manufacture (AM) a representative thin-walled aerospace component from Ti-6Al-4V in a layer-wise manner. Residual strains, and hence stresses, were analysed quantitatively using neutron diffraction techniques on the KOWARI strain scanner at the OPAL research facility operated by the Australian Nuclear Science and Technology Organisation (ANSTO). Results showed that residual strains within such an AM sample could be measured with relative ease using the neutron diffraction method. Residual stress levels were found to be greatest in the longitudinal direction and concentrated at the interface between the base plate and deposited wall. Difficulties in measurement of lattice strains in some discrete locations were ascribed to the formation of the formation of localised texturing where α-Ti laths form in aligned colonies within prior β-Ti grain boundaries upon cooling. Observations of microstructure reveal basket-weave morphology typical of welds in Ti-6Al-4V. Microhardness measurements show a drop in hardness in the top region of the deposit, indicating a dependence on thermal cycling from sequential welds. © 2014, Trans Tech Publications.
Gov't Doc #: 7023
ISSN: 1662-9752
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.